THOUSANDS OF FREE BLOGGER TEMPLATES

Friday, June 17, 2011

10 jenis kucing prasejarah terbesar di dunia

1. Smilodon

Smilodon adalah salah satu predator prasejarah paling terkenal, dan juga salah satu yang paling tangguh. Setidaknya ada tiga spesies hidup di Utara dan Amerika Selatan; spesies terkecil, Smilodon gracilis, seukuran jaguar modern, sedangkan Smilodon fatalis sebesar singa.

Namun, spesies Smilodon Populator berbobot 300 kg (661 £) dan rata-rata mencapai hingga 500 kg (£ 1102) ketika dewasa! Smilodon tidak begitu lincah seperti kucing modern, tapi ia sangatlah kuat, dengan kaki yang kuat juga leher yang tebal, dan terutama kukunya yang panjang untuk mencengkeram mangsanya. taring nya bisa mencapai 30 cm (12 ") panjangnya, dan sempurna untuk menyebabkan cedera fatal bajing tanah, hewan besar, bahkan juga mammoth !


2. Harimau Pleistosen

Harimau Pleistosen merupakan "versi awal" dari harimau yang sama kita lihat sekarang. Harimau berkembang di suatu tempat di Asia sekitar 2 juta tahun yang lalu, khusus untuk memangsa beragam jenis herbivora besar yang tinggal di benua pada saat itu. Harimau adalah kucing terbesar saat ini, dengan Bengal besar dan Siberia jantan yang berbobot hingga mencapai 300 kg (£ 661) atau lebih. Namun, selama jaman Pleistosen, pasokan makanan yang lebih besar, sehingga harimau itu sendiri yang lebih besar, dengan bobot 490 kg (1080 £)

3. Singa Amerika

Singa Amerika atau Atrox Panthera, mungkin yang paling dikenal dari semua kucing prasejarah setelah Smilodon. Ia tinggal di Utara dan Amerika Selatan (dari Alaska ke Peru) selama zaman Pleistosen, dan punah 11.000 tahun lalu, Singa Amerika adalah kucing terbesar di Amerika Utara selama Zaman Es, beratnya mencapai 470 (£ 1036), bahkan mungkin 500 kg (£ 1102), dan mampu memangsa hewan yang sangat besar.


4. Machairodus Kabir

Machairodus, mungkin tampak seperti harimau raksasa dengan gigi pedang, walaupun tidak mungkin untuk mengetahui apakah kulitnya bergaris-garis, berbintik-bintik atau jenis lain dari tanda bulunya. Machairodus jarang disebutkan sebagai kucing raksasa, tetapi fosil yang ditemukan di Chad, Afrika, (dan diklasifikasikan sebagai spesies baru, Machairodus kabir), menunjukkan bahwa makhluk ini merupakan salah satu kucing terbesar dengan bobot 490 kg (£ 1080 ) atau mungkin 500 kg (£ 1102).


5. Homotheirum 

Juga dikenal sebagai "kucing pedang", Homotherium adalah salah satu kucing paling sukses di zaman prasejarah, ditemukan di Amerika Utara dan Amerika Selatan, Eropa, Asia dan Afrika. Ia pemburu baik, disesuaikan dengan kaki yang cepat berjalan dan aktif terutama pada siang hari (sehingga menghindari persaingan dengan predator nokturnal lainnya).

Kaki depannya sangat panjang dan kaki belakang lebih pendek, yang memberikan penampilan yang sedikit seperti hyena. Meskipun Homotherium tidak terkenal untuk ukurannya, namun fosil beberapa sisa-sisa kucing pedang baru-baru ini ditemukan di Laut Utara menunjukkan bahwa mereka bisa mencapai berat 400 kg (882 £), lebih besar daripada harimau Siberia modern.

6. Cave Lion 

Singa Gua adalah subspesies singa raksasa, beratnya mencapai 300 kg (£ 661) atau lebih. Ini adalah salah satu predator paling berbahaya dan kuat selama Zaman Es terakhir di Eropa, dan ada bukti bahwa ia ditakuti, dan mungkin disembah oleh manusia prasejarah. Banyak lukisan gua dan beberapa patung telah ditemukan yang menggambarkan Singa Gua.

Menariknya, ini menunjukkan bahwa singa ini nyaris tidak memliki bulu leher, seperti pada harimau modern. Hal ini membingungkan, beberapa lukisan gua juga menunjukkan Singa Gua memiliki garis-garis samar pada kaki dan ekor. Hal ini menyebabkan beberapa ilmuwan menyarankan bahwa mungkin Singa Gua sebenarnya lebih terkait dengan Harimau.

7. European Jaguar 

Berbeda dengan Jaguar raksasa, jaguar Eropa atau gombaszoegensis Panthera tidak berasal dari spesies yang sama seperti jaguar modern. Jaguar Eropa adalah predator besar, beratnya mencapai 210 kg (463 £) atau lebih, dan mungkin di bagian atas rantai makanan di Eropa, 1,5 juta tahun yang lalu. Fosilnya tetap telah ditemukan di Jerman, Perancis, Inggris, Spanyol dan Belanda.

8. Giant Jaguar 

Jaguar sekarang bertubuh lebih kecil jika dibandingkan dengan singa atau harimau, berat rata-rata mereka biasanya 60-100 kg (132-220 £). Namun pada zaman prasejarah, Bagian dari Amerika Utara & Selatan adalah rumah bagi Jaguar raksasa. Masih spesies yang sama dengan jaguar modern. Ia berukuran melebihi singa dewasa atau harimau, dan mungkin beberapa kali lebih kuat begitu pula dengan dengan gigitannya

9. Xenosmilus 

Xenosmilus bertaring pendek, tebal, namun cukup tajam. Semua giginya (bukan hanya gigi taring) memiliki tepi bergerigi untuk memotong daging, dan lebih seperti gigi hiu atau dinosaurus karnivora, dibanding gigi kucing modern. Dengan bobot 180-230 kg (397-507 £) Xenosmilus tidak mencekik mangsanya seperti kucing modern melakukannya, ia hanya menggigit sepotong besar daging dari korban, dan menunggu mangsanya mati kehabisan darah.

10. Giant Cheetah 

Cheetah Raksasa (Acinonyx pardinensis), berasal dari genus yang sama dengan Cheetah modern kita (Acinonyx jubatus), dan mungkin tampak sangat mirip, tapi jauh lebih besar. Dengan bobot 120-150 kg (265-331 £) ia mampu memangsa hewan yang lebih besar daripada besar tubuhnya.

Namun ada beberapa perdebatan apakah ia bisa lari secepat Cheetah modern, karena beratnya yang lebih besar, namun menurut beberapa ahli, Cheetah Raksasa memiliki kaki lebih panjang dan jantung serta paru-paru yang lebih besar, memungkinan ia mampu berlari secepat, atau bahkan lebih cepat daripada cheetah hari ini - yang lebih dari 115 km / jam (72mph)!

Friday, June 3, 2011

Ditemukan, Makam 'Dewa Jester' dari Suku Maya


Arkeolog menemukan makam tertua penguasa suku Maya kuno berlambang ‘Dewa Jester’ dari tahun 350 SM. Berdasarkan lambang unik itu, inilah bukti kerangka pihak kerajaan tertua di dunia.

http://static.inilah.com/data//berita/foto/1393072.jpg

Ditemukan di sebuah makam di bawah rumah penguasa di kawasan Holmul, timur laut Guatelmala, kerangka itu diperkirakan milik pria berusia lima puluhan tahun dengan kondisi kesehatan baik menjelang kematiannya.

Selain lambang Dewa Jester, di makam itu tampak pula tujuh keramik, guci, piring dan alat pembakar dupa.
“Kami pernah menemukan makam Suku Maya yang lebih tua, namun tidak pernah menemukan kuburan yang mencakup simbol kerajaan seperti ini,” kata John Tomasic dari University of Kansas, Amerika Serikat.

Di bawah situs arkeolog itu, ahli juga menemukan terowongan dengan lebar sekitar 16 inci, cukup lebar untuk dimasuki tubuh manusia. Tempat itu diperkirakan sebagai lorong menuju tempat penguburan.

Hasil penelitian ini diungkapkan pada pertemuan Society for American Archaeology di Sacramento, California, Amerika Serikat. Sebelumnya, kuburan penguasa Maya dari tahun 100 SM ditemukan di San Bartolo pada 2005.

Inilah Fosil Utuh Laba-laba Terbesar yang Pernah di Temukan Para Arkeolog


Sebuah fosil laba-laba Golden Orb Weavers atau Nephila jurassica ditemukan oleh para ilmuwan pada abu vulkanik kuno di wilayah Mongolia. Demikian dilansir Fox News. Fosil ini diperkirakan berumur 165 juta tahun itu memiliki panjang 15 sentimeter, fosil laba-laba terbesar yang pernh ditemukan. Fosil ditemukan dalam bentuk yang utuh sempurna.

Dari ukuran lebar tubuh 2,5 cm serta kaki sepanjang 6,3 cm, diidentifikasikan fosil itu merupakan laba-laba betina raksasa dari zaman prasejarah. Laba-laba jantan berukuran yang lebih kecil.

Fosil Utuh Laba-laba Terbesar

Laba-laba yang merupakan hewan yang hidup di iklim tropis dan sub-tropis ini mampu memangsa burung atau kelelawar. Mereka menangkap mangsanya dengan menggunakan jaring sutra yang berkilau seperti emas jika terpapar sinar matahari.

"Temuan fosil ini sangat penting. Dengan temuan ini kami bisa terbantu untuk memahami evolusi serangga dan khususnya laba-laba," ujar Profesor Paul Selden dari Paleontological Institute di University of Kansas, salah seorang ilmuwan peneliti. "Kami memperkirakan pada masa itu banyak sekali serangga yang terbang dengan tubuh yang besar. Mungkin juga dulu ada gunung di dekat tempat penemuan fosil, melihat adanya tumpukan abu vulkanik kuno yang mengubur fosil," katanya.

Anomalocaridid, Inilah Predator Terbesar di Bumi Pada Zaman Cambrian

Monster ini adalah predator paling besar di dunia di zamannya. Ia hidup jutaan lalu, tumbuh membesar dan terus bertahan dalam kurun waktu yang begitu panjang.

Hewan laut yang lebih dikenal sebagai anomalocaridid itu sebenarnya tak begitu besar. Ukurannya antara 0,6 - 1,8 meter. Namun di masanya ia merupakan predator dengan ukuran tubuh yang paling besar.

Spesies yang bentuknya mirip udang itu punya bagian tubuh yang lunak, perut yang bergerigi, serta anggota tubuh mirip sungut, yang berduri. Fungsinya adalah untuk menyeret cacing atau mangsa lainnya untuk dilahap.


Anomalocaridid

"Hewan ini berada di atas mata rantai makanan. Ia adalah predator yang tak tertandingi di masanya," ujar Peter Van Roy, seorang paleobiologist dari Ghent University Belgia, seperti dikutip dari situs LiveScience.

Hasil riset terakhir menunjukkan bahwa binatang ini sempat merajai daerah perairan pada periode Cambrian pertengahan, antara 542 juta sampai 501 juta tahun yang lalu. Periode ini adalah masa di mana seluruh grup besar di kerajaan binatang muncul, dan ekosistem kompleks tengah terbentuk.

Bahkan , menurut peneliti Derek Briggs yang juga Direktur Yale Peabody Museum of Natural History, anomalocaridid adalah salah satu kelompok yang paling ikonik di antara grup-grup binatang di zaman Cambrian.

Fosil terbesar dari binatang ini ditemukan di gurun berbatu di sebelah tenggara Maroko, oleh kolektor bernama Mohammed Ben Moula. Dari fosil, diketahui bahwa predator ini hidup 30 juta tahun lebih lama daripada yang sebelumnya diperkirakan.

Dari fosil juga ditemukan struktur mirip 100 pedang fleksibel di setiap segmen di sepanjang punggung mereka. Para peneliti meyakini organ itu mungkin berfungsi sebagai insang. Ia hidup di dasar laut yang berlumpur, dengan kedalaman setidaknya 100 meter di bawah permukaan laut.

Menurut Van Roy, anomalocaridid bertahan sekian lama menunjukkan bahwa mereka mampu beradaptasi dengan baik dan merupakan predator yang sukses. Belum diketahui pasti apa penyebab anomalocaridid bisa punah.

Namun, ilmuwan curiga kepunahan binatang itu terkait dengan kemunculan dua predator lain di awal masa Ordovician (periode setelah Cambrian - sekitar 488 juta hingga 472 juta tahun silam), yakni eurypterid (kalajengking laut) dan nautiloid (seperti cumi-cumi dengan rumah kerang kerucut). Sebab, dua predator itu memiliki ukuran tubuh yang lebih besar.

"Sepertinya anomalocaridid tak bisa bersaing oleh predator-predator yang lebih canggih dan bisa beradaptasi lebih baik. Sementara anomalocaridid pada dasarnya memiliki tubuh yang lunak, eurypterid memiliki exoskeleton yang lebih keras. Adapun nautiloid punya kerang yang kokoh dan paruh yang bertenaga," kata Van Roy.

Monday, June 7, 2010

Tata Surya Memantul - Dinosaurus Punah

Bumi bergerak mengelilingi pusat massanya yang berada dekat Matahari. Dan Matahari bersama seluruh sistem Tata Surya juga bergerak mengelilingi pusat Galaksi. Pergerakan Matahari di Bimasakti, secara reguler ternyata mengirimkan komet meluncur masuk ke bagian dalam Tata Surya. Akibatnya terjadi tabrakan besar-besaran yang memusnahkan kehidupan di Bumi.
Itulah hasil penelitian terbaru yang dihasilkan oleh pemodelan terbaru di Cardiff Centre for Astrobiology.Dalam pemodelan itu dilakukan simulasi gerak Tata Surya dan ditemukan kalau geraknya ternyata memantul ke atas dan ke bawah di sepanjang bidang Galaksi. Saat melewati bagian paling rapat dari bidang Galaksi, gaya gravutasi dari area sekitar awan gas dan debu raksasa justru mengubah komet dari jalurnya. Akhirnya komet-komet itu pun tercebur masuk ke dalam Tata Surya, dan sebagian di antaranya mengalami tabrakan dengan bumi.
Diperkirakan, Tata Surya akan bergerak melewati bidang Galaksi setiap 35 - 45 juta tahun dan meningkatkan kemungkinan terjadinya tabrakan dengan komet. Bukti dari kawah yang ada di bumi juga menunjukan kalau Bumi menderita tabrakan itu pada kisaran 36 juta tahun lalu. Dengan demikian bisa dikatakan ada kesesuain yang didapat dari fakta kejadian di bumi dengan hasil pemodelan untuk gerak Tata Surya dalam Bimasakti.
Periode tabrakan besar yang terjadi di Bumi juga bertepatan dengan terjadinya pemusnahan massal dinosaurus 65 juta tahun yang lalu. Dan jika melihat posisi kita di galaksi saat ini, maka saat ini kita sudah berada cukup dekat dengan periode serupa.
Jika kita kembali ke 65 juta tahun lalu, maka bisa dikatakan efek pantulan di bidang galaksi merupakan mimpi buruk bagi dinosaurus, namun ternyata kejadian itu justru menjadi awal baru dari penyebaran kehidupan. Diperkirakan, tabrakan tersebut melepaskan puing-puing berisi mikro organisme ke angkasa dan di seluruh alam semesta.

Ilmuwan Simpulkan Penyebab Punahnya Dinosaurus

Panel 41 ilmuwan mengkaji riset 20 tahun guna mengonfirmasi penyebab punahnya dinosaurus akibat lingkungan neraka 65 juta tahun lalu dan menghapus separuh spesies. Pendapat ilmuwan terpecah mengenai apakah kepunahan dinosaurus disebabkan oleh asteroid atau oleh kegiatan gunung berapi di Deccan Traps, yang sekarang adalah India, tempat serangkaian letusan gunung berapi yang berlangsung selama 1,5 juta tahun.

Studi baru itu oleh ilmuwan dari Eropa, Amerika Serikat, Meksiko, Kanada dan Jepang dan disiarkan di jurnal Science mendapati bahwa asteroid dengan lebar 15 kilometer menghantam bumi di Chixulub (kini Meksiko) adalah penyebab punahnya Cretaceous-Tertiary atau biasa disebut KT, masa kehidupan para dinosaurus.

"Kami sekarang memiliki bukti besar bahwa satu asteroid adalah penyebab kepunahan KT. Ini memicu kebakaran sangat besar, gempa bumi dengan ukuran lebih dari 10 pada skala Richter, dan tanah longsor seluas benua, yang menciptakan tsunami," kata Joanna Morgan dari Imperial College London, penulis bersama kajian tersebut. Asteroid itu diduga telah menghantam bumi dengan kekuatan satu miliar kali lebih kuat dibandingkan dengan bom atom di Hiroshima.

Morgan mengatakan "paku terakhir di peti mati bagi dinosaurus" hadir ketika bahan ledakan beterbangan di atmosfir, menyelimuti planet ini dalam kegelapan, sehingga memicu musim dingin global dan "membunuh banyak spesies yang tak dapat menyesuaikan diri dengan lingkungan itu".

Para ilmuwan yang mengerjakan studi tersebut menganalisis pekerjaan ahli palaeontologi, geokemistri, contoh iklim, geofisika dan sedimentologi yang telah mengumpulkan bukti mengenai kepunahan KT selama 20 tahun belakangan.

Catatan geologi memperlihatkan peristiwa itu yang memicu kepunahan dinosaurus dengan cepat merusak ekosistem darat dan laut, kata mereka, dan hantaman asteroid tersebut "adalah satu-satunya penjelasan yang dapat diterima untuk ini".

Peter Schulte dari University of Erlangen di Jerman, penulis utama mengenai studi itu, mengatakan catatan fosil dengan jelas memperlihatkan kepunahan massal sekitar 65,5 juta tahun lalu, masa yang sekarang dikenal sebagai perbatasan K-Pg.

Teori gunung api Deccan juga terlempar ke dalam keraguan oleh model mengenai kimiawi atmosfir, kata tim tersebut, yang memperlihatkan dampak asteroid diduga telah mengeluarkan jauh lebih banyak sulfur, debu dan jelaga dalam waktu lebih singkat dibandingkan dengan ledakan gunung berapi, dan mengakibatkan kegelapan dan udara dingin yang sangat ekstrem.

Gareth Collins, penulis lain dari Imperial College, mengatakan dampak asteroid bukan hanya menciptakan "hari yang bagaikan neraka" yang menandai akhir dari 160 juta tahun kejayaan dinosaurus, tapi juga menjadi hari yang sangat besar bagi hewan mamalia. "Kepunahan KT adalah masa penting dalam sejarah bumi, yang akhirnya melicinkan jalan bagi manusia untuk menjadi spesies dominan di bumi," ia menulis di dalam komentar mengenai studi itu, sebagaimana dikutip oleh wartawan Reuters, Kate Kelland.

Ilmuwan, Dampak Tabrakan Asteroid Penyebab Kepunahan DinosaurusA
steroid raksasa menabrak Bumi adalah satu-satunya penjelasan yang masuk akal dan ilmiah untuk menjadi penyebab kepunahan dinosaurus, tim ilmiah global menyatakan pada hari Kamis, sebelumnya hal ini masih diperdebatkan oleh ilmuwan di seluruh dunia.
Kelompok yang terdiri dari 41 ilmuwan dari seluruh dunia meneliti telah melakukan penelitian yang sangat lama untuk mencoba untuk memastikan penyebab yang disebut kepunahan Cretaceous-Tersier (KT), yang menciptakan sebuah “lingkungan neraka” sekitar 65 juta tahun yang lalu dan menghapuskan setengah dari spesies yang hidup di muka bumi ini.

http://static.howstuffworks.com/gif/dinosaur-images-130-resize.jpgPendapat ilmiah terbagi atas apakah kepunahan itu disebabkan oleh sebuah asteroid atau karena aktivitas gunung berapi di Deccan Traps di tempat yang sekarang India, di mana ada serangkaian letusan besar gunung berapi yang berlangsung sekitar 1,5 juta tahun.
Studi bar, dilakukan oleh para ilmuwan dari Eropa, Amerika Serikat, Meksiko, Kanada dan Jepang yang kemudian diterbitkan dalam jurnal Science, menemukan bahwa penyebab kempunahan dinosaurus yaitu asteroid dengan lebar 9-mil lebar yang jatuh di Chicxulub di tempat yang sekarang menjadi negara Meksiko.
“Kami sekarang memiliki keyakinan besar bahwa sebuah asteroid adalah penyebab kepunahan KT. Hal ini memicu kebakaran dalam skala besar, gempa bumi berukuran lebih dari 10 pada skala Richter yang menciptakan tsunami,” kata Joanna Morgan dari Imperial College London.
Asteroid diperkirakan telah menghantam bumi dengan kekuatan satu miliar kali lebih kuat daripada bom atom di Hiroshima.
Morgan mengatakan ketika ketika bahan beracun akibat kebakaran terbang ke atmosfir, menyelubungi planet dalam kegelapan, menyebabkan musim dingin global dan “membunuh banyak spesies yang tidak bisa beradaptasi dengan lingkungan neraka ini.”
Ilmuwan yang bekerja pada studi menganalisis karya ahli paleontologi, geochemists, iklim modelers, Geophysicists dan sedimentologists yang telah mengumpulkan bukti tentang kepunahan KT selama 20 tahun terakhir.
Catatan geologi menunjukkan peristiwa yang memicu matinya dinosaurus yang juga menghancurkan ekosistem laut dan darat, kata mereka, tumbukan asteroid adalah satu-satunya penjelasan yang masuk akal untuk ini.
Petrus Schulte dari University of Erlangen di Jerman, seorang penulis utama pada penelitian itu, mengatakan catatan fosil dengan jelas menunjukkan kepunahan massal sekitar 65,5 juta tahun yang lalu – waktu sekarang dikenal sebagai batas K-Pg.
Meskipun bukti vulkanik aktif ditemukan di India, namun laut dan ekosistem tanah hanya menunjukkan perubahan kecil dalam 500.000 tahun sebelum batas Pg K, yang menunjukkan kepunahan tidak datang lebih awal dan tidak dipicu oleh letusan.
Teori gunung berapi Deccan juga sempat menyebabkan keraguan bahwa dengan model kimia atmosfer, belerang, debu dan jelaga dalam waktu yang lebih pendek daripada letusan gunung berapi bisa saja, menyebabkan ekstrim gelap dan pendinginan.
Gareth Collins, penulis lain dari Imperial College, mengatakan bahwa tabrakan asteroid menciptakan sebuah “hari kiamat” yang menandakan akhir 160-juta-tahun masa kehidupan dinosaurus, tetapi juga ternyata menjadi hari besar bagi mamalia.
“Kepunahan KT adalah sebuah momen penting dalam sejarah bumi, yang akhirnya membuka jalan bagi manusia untuk menjadi spesies dominan di Bumi,” ia menulis dalam sebuah kom

Saturday, June 5, 2010

Paleontology

From Wikipedia, the free encyclopedia

Jump to:navigation, search
Paleontology investigates the whole history of life on Earth
Paleontologist at work, John Day Fossil Beds National Monument.
Preparation of the fossilized bones of Europasaurus holgeri
Paleontology (British: palaeontology)[note 1] is the study of prehistoric life, including organisms' evolution and interactions with each other and their environments (their paleoecology). As a "historical science" it tries to explain causes rather than conduct experiments to observe effects. Paleontological observations have been documented as far back as the 5th century BC. The science became established in the 18th century as a result of Georges Cuvier's work on comparative anatomy, and developed rapidly in the 19th century. Fossils found in China since the 1990s have provided new information about the earliest evolution of animals, early fish, dinosaurs and the evolution of birds and mammals. Paleontology lies on the border between biology and geology, and shares with archaeology a border that is difficult to define. It now uses techniques drawn from a wide range of sciences, including biochemistry, mathematics and engineering. As knowledge has increased, paleontology has developed specialized subdivisions, some of which focus on different types of fossil organisms while others study ecological and environmental history, such as ancient climates.
Body fossils and trace fossils are the principal types of evidence about ancient life, and geochemical evidence has helped to decipher the evolution of life before there were organisms large enough to leave fossils. Estimating the dates of these remains is essential but difficult: sometimes adjacent rock layers allow radiometric dating, which provides absolute dates that are accurate to within 0.5%, but more often paleontologists have to rely on relative dating by solving the "jigsaw puzzles" of biostratigraphy. Classifying ancient organisms is also difficult, as many do not fit well into the Linnean taxonomy that is commonly used for classifying living organisms, and paleontologists more often use cladistics to draw up evolutionary "family trees". The final quarter of the 20th century saw the development of molecular phylogenetics, which investigates how closely organisms are related by measuring how similar the DNA is in their genomes. Molecular phylogenetics has also been used to estimate the dates when species diverged, but there is controversy about the reliability of the molecular clock on which such estimates depend.
Use of all these techniques has enabled paleontologists to discover much of the evolutionary history of life, almost all the way back to when Earth became capable of supporting life, about 3,800 million years ago. For about half of that time the only life was single-celled micro-organisms, mostly in microbial mats that formed ecosystems only a few millimeters thick. Earth's atmosphere originally contained virtually no oxygen, and its oxygenation began about 2,400 million years ago. This may have caused an accelerating increase in the diversity and complexity of life, and early multicellular plants and fungi have been found in rocks dated from 1,700 to 1,200 million years ago. The earliest multicellular animal fossils are much later, from about 580 million years ago, but animals diversified very rapidly and there is a lively debate about whether most of this happened in a relatively short Cambrian explosion or started earlier but has been hidden by lack of fossils. All of these organisms lived in water, but plants and invertebrates started colonizing land from about 490 million years ago and vertebrates followed them about 370 million years ago. The first dinosaurs appeared about 230 million years ago and birds evolved from one dinosaur group about 150 million years ago. During the time of the dinosaurs, mammals' ancestors survived only as small, mainly nocturnal insectivores, but after the non-avian dinosaurs became extinct in the Cretaceous–Tertiary extinction event 65 million years ago mammals diversified rapidly. Flowering plants appeared and rapidly diversified between 130 million years ago and 90 million years ago, possibly helped by coevolution with pollinating insects. Social insects appeared around the same time and, although they have relatively few species, now form over 50% of the total mass of all insects. The upright-walking common ancestor of humans and chimpanzees Sahelanthropus tchadensis appeared around 6 to 7 million years ago, and anatomically modern humans appeared under 200,000 years ago. The course of evolution has been changed several times by mass extinctions that wiped out previously dominant groups and allowed other to rise from obscurity to become major components of ecosystems.

Contents

[hide]

[edit] Definition

A paleontologist carefully chips rock from a column of dinosaur vertebrae.
The simplest definition is "the study of ancient life".[1] Paleontology seeks information about several aspects of past organisms: "their identity and origin, their environment and evolution, and what they can tell us about the Earth's organic and inorganic past".[2]

[edit] A historical science

Paleontology is one of the historical sciences, along with archaeology, geology, biology, astronomy, cosmogony, philology and history itself.[3] This means that it aims to describe phenomena of the past and reconstruct their causes.[4] Hence it has three main elements: description of the phenomena; developing a general theory about the causes of various types of change; and applying those theories to specific facts.[3]
When trying to explain past phenomena, paleontologists and other historical scientists often construct a set of hypotheses about the causes and then look for a "smoking gun", a piece of evidence which indicates that one of the hypotheses is a better explanation than the others. Sometimes the "smoking gun" is discovered by a fortunate accident during other research, for example the discovery by Luis Alvarez and Walter Alvarez of an iridium-rich layer at the CretaceousTertiary boundary made asteroid impact and volcanism the most favored explanations for the Cretaceous–Tertiary extinction event.[4]
The other main type of science is experimental science, which is often said to work by conducting experiments to disprove hypotheses about the workings and causes of natural phenomena – note that this approach cannot prove a hypothesis is correct, since some later experiment may disprove it. However, when confronted with totally unexpected phenomena, such as the first evidence for invisible radiation, experimental scientists often use the same approach as historical scientists: construct a set of hypotheses about the causes and then look for a "smoking gun".[4]

[edit] Related sciences

Paleontology lies on the boundary between biology and geology since paleontology focuses on the record of past life but its main source of evidence is fossils, which are found in rocks.[5] For historical reasons paleontology is part of the geology departments of many universities, because in the 19th and early 20th centuries geology departments found paleontological evidence important for estimating the ages of rocks while biology departments showed little interest.[6]
Paleontology also has some overlap with archaeology, which primarily works with objects made by humans and with human remains, while paleontologists are interested in the characteristics and evolution of humans as organisms. When dealing with evidence about humans, archaeologists and paleontologists may work together – for example paleontologists might identify animal or plant fossils around an archaeological site, to discover what the people who lived there ate; or they might analyze the climate at the time when the site was inhabited by humans.[7]
Analyses using engineering techniques show that Tyrannosaurus had a devastating bite, but raise doubts about how fast it could move.
The technique Microraptor used for flight was studied in by Xu Xing and engineers from Brown University's flight mechanics team using a wind tunnel.[8] Wind tunnels are used to study high speed fluid flows and aerodynamic engineering.
In addition paleontology often uses techniques derived from other sciences, including biology, ecology, chemistry, physics and mathematics.[1] For example geochemical signatures from rocks may help to discover when life first arose on Earth,[9] and analyses of carbon isotope ratios may help to identify climate changes and even to explain major transitions such as the Permian–Triassic extinction event.[10] A relatively recent discipline, molecular phylogenetics, often helps by using comparisons of different modern organisms' DNA and RNA to re-construct evolutionary "family trees"; it has also been used to estimate the dates of important evolutionary developments, although this approach is controversial because of doubts about the reliability of the "molecular clock".[11] Techniques developed in engineering have been used to analyse how ancient organisms might have worked, for example how fast Tyrannosaurus could move and how powerful its bite was.[12][13]
Paleontology even contributes to astrobiology, the investigation of possible life on other planets, by developing models of how life may have arisen and by providing techniques for detecting evidence of life.[14]

[edit] Subdivisions

As knowledge has increased, paleontology has developed specialised subdivisons.[15] Vertebrate paleontology concentrates on fossils of vertebrates, from the earliest fish to the immediate ancestors of modern mammals. Invertebrate paleontology deals with fossils of invertebrates such as molluscs, arthropods, annelid worms and echinoderms. Paleobotany focuses on the study of fossil plants, but traditionally includes the study of fossil algae and fungi. Palynology, the study of pollen and spores produced by land plants and protists, straddles the border between paleontology and botany, as it deals with both living and fossil organisms. Micropaleontology deals with all microscopic fossil organisms, regardless of the group to which they belong.[16]
In the Carboniferous period, the continents were not in the same places as they are today, and there was extensive glaciation.
Instead of focusing on individual organisms, paleoecology examines the interactions between different organisms, such as their places in food chains, and the two-way interaction between organisms and their environment[17] – for example the development of oxygenic photosynthesis by bacteria hugely increased the productivity and diversity of ecosystems,[18] and also caused the oxygenation of the atmosphere, which in turn was a prerequisite for the evolution of the most complex eucaryotic cells, from which all multicellular organisms are built.[19] Paleoclimatology, although sometimes treated as part of paleoecology,[16] focuses more on the history of Earth's climate and the mechanisms which have changed it[20] – which have sometimes included evolutionary developments, for example the rapid expansion of land plants in the Devonian period removed more carbon dioxide from the atmosphere, reducing the greenhouse effect and thus helping to cause an ice age in the Carboniferous period.[21]
Biostratigraphy, the use of fossils to work out the chronological order in which rocks were formed, is useful to both paleontologists and geologists.[22] Biogeography studies the spatial distribution of organisms, and is also linked to geology, which explains how Earth's geography has changed over time.[23]

[edit] Sources of evidence

[edit] Body fossils

This Marrella specimen illustrates how clear and detailed the fossils from the Burgess Shale lagerstätte are.
Fossils of organisms' bodies are usually the most informative type of evidence. The most common types are wood, bones, and shells.[24] Fossilisation is a rare event, and most fossils are destroyed by erosion or metamorphism before they can be observed. Hence the fossil record is very incomplete, increasingly so further back in time. Despite this, it is often adequate to illustrate the broader patterns of life's history.[25] There are also biases in the fossil record: different environments are more favorable to the preservation of different types of organism or parts of organisms.[26] Further, only the parts of organisms that were already mineralised are usually preserved, such as the shells of molluscs. Since most animal species are soft-bodied, they decay before they can become fossilised. As a result, although there are 30-plus phyla of living animals, two-thirds have never been found as fossils.[27]
Occasionally, unusual environments may preserve soft tissues. These lagerstätten allow paleontologists to examine the internal anatomy of animals that in other sediments are represented only by shells, spines, claws, etc. – if they are preserved at all. However, even lagerstätten present an incomplete picture of life at the time. The majority of organisms living at the time are probably not represented because lagerstätten are restricted to a narrow range of environments, e.g. where soft-bodied organisms can be preserved very quickly by events such as mudslides; and the exceptional events that cause quick burial make it difficult to study the normal environments of the animals.[28] The sparseness of the fossil record means that organisms are expected to exist long before and after they are found in the fossil record – this is known as the Signor-Lipps effect.[29]

[edit] Trace fossils

Trace fossils consist mainly of tracks and burrows, but also include coprolites (fossil feces) and marks left by feeding.[24][30] Trace fossils are particularly significant because they represent a data source that is not limited to animals with easily-fossilized hard parts, and which reflects organisms' behaviour. Also many traces date from significantly earlier than the body fossils of animals that are thought to have been capable of making them.[31] Whilst exact assignment of trace fossils to their makers is generally impossible, traces may for example provide the earliest physical evidence of the appearance of moderately complex animals (comparable to earthworms).[30]

[edit] Geochemical observations

Geochemical observations may help to deduce the global level of biological activity, or the affinity of a certain fossil. For example geochemical features of rocks may reveal when life first arose on Earth,[9] and may provide evidence of the presence of eucaryotic cells, the type from which all multicellular organisms are built.[32] Analyses of carbon isotope ratios may help to explain major transitions such as the Permian–Triassic extinction event.[10]

[edit] Classifying ancient organisms

Tetrapods

Amphibians

Amniotes
Synapsids

Extinct Synapsids

    Mammals


Reptiles

Extinct reptiles


Lizards and snakes

Archosaurs
 ? 

Extinct
Archosaurs


Crocodilians

Dinosaurs
 ? 

Extinct
Dinosaurs


 ? 
Birds






Simple example cladogram.
    Warm-bloodedness evolved somewhere in the
synapsid–mammal transition.
 ?  Warm-bloodedness must also have evolved at one of
these points – an example of convergent evolution.[33]
Levels in the Linnean taxonomy.
Naming groups of organisms in a way that is clear and widely agreed is important, as some disputes in palaeontology have been based just on misunderstandings over names.[34] Linnean taxonomy is commonly used for classifying living organisms, but runs into difficulties when dealing with newly-discovered organisms that are significantly different from known ones. For example: it is hard to decide at what level to place a new higher-level grouping, e.g. genus or family or order; this is important since the Linnean rules for naming groups are tied to their levels, and hence if a group is moved to a different level it has to be renamed.[35]
Paleontologists generally use approaches based on cladistics, a technique for working out the evolutionary "family tree" of a set of organisms.[34] It works by the logic that, if groups B and C have more similarities to each other than either has to group A, then B and C are more closely related to each other than either is to A. Characters that are compared may be anatomical, such as the presence of a notochord, or molecular, by comparing sequences of DNA or proteins. The result of a successful analysis is a hierarchy of clades – groups that share a common ancestor. Ideally the "family tree" has only two branches leading from each node ("junction"), but sometimes there is too little information to achieve this and paleontologists have to make do with junctions that have several branches. The cladistic technique is sometimes fallible, as some features, such as wings or camera eyes, evolved more than once, convergently – this must be taken into account in analyses.[33]
Evolutionary developmental biology, commonly abbreviated to "Evo Devo", also helps paleontologists to produce "family trees". For example the embryological development of some modern brachiopods suggests that brachiopods may be descendants of the halkieriids, which became extinct in the Cambrian period.[36]

[edit] Estimating the dates of organisms

Paleontology seeks to map out how living things have changed through time. A substantial hurdle to this aim is the difficulty of working out how old fossils are. Beds which preserve fossils typically lack the radioactive elements needed for radiometric dating. This technique is our only means of giving rocks greater than about 50 million years old an absolute age, and can be accurate to within 0.5% or better.[37] Although radiometric dating requires very careful laboratory work, its basic principle is simple: the rates at which various radioactive elements decay are known, and so the ratio of the radioactive element to the element into which it decays shows how long ago the radioactive element was incorporated into the rock. Radioactive elements are common only in rocks with a volcanic origin, and so the only fossil-bearing rocks that can be dated radiometrically are a few volcanic ash layers.[37]
Consequently, paleontologists must usually rely on stratigraphy to date fossils. Stratigraphy is the science of deciphering the "layer-cake" that is the sedimentary record, and has been compared to a jigsaw puzzle.[38] Rocks normally form relatively horizontal layers, with each layer younger than the one underneath it. If a fossil is found between two layers whose ages are known, the fossil's age must lie between the two known ages.[39] Because rock sequences are not continuous, but may be broken up by faults or periods of erosion, it is very difficult to match up rock beds that are not directly next to one another. However, fossils of species that survived for a relatively short time can be used to link up isolated rocks: this technique is called biostratigraphy. For instance, the conodont Eoplacognathus pseudoplanus has a short range in the Middle Ordovician period.[40] If rocks of unknown age are found to have traces of E. pseudoplanus, they must have a mid-Ordovician age. Such index fossils must be distinctive, be globally distributed and have a short time range to be useful. However, misleading results are produced if the index fossils turn out to have longer fossil ranges than first thought.[41] Stratigraphy and biostratigraphy can in general provide only relative dating (A was before B), which is often sufficient for studying evolution. However, this is difficult for some time periods, because of the problems involved in matching up rocks of the same age across different continents.[42]
Family-tree relationships may also help to narrow down the date when lineages first appeared. For instance, if fossils of B or C date to X million years ago and the calculated "family tree" says A was an ancestor of B and C, then A must have evolved more than X million years ago.
It is also possible to estimate how long ago two living clades diverged – i.e. approximately how long ago their last common ancestor must have lived  – by assuming that DNA mutations accumulate at a constant rate. These "molecular clocks", however, are fallible, and provide only a very approximate timing: for example, they are not sufficiently precise and reliable for estimating when the groups that feature in the Cambrian explosion first evolved,[43] and estimates produced by different techniques may vary by a factor of two.[11]

[edit] Overview of the history of life

The evolutionary history of life stretches back to over 3,000 million years ago, possibly as far as 3,800 million years ago. Earth formed about 4,540 million years ago and, after a collision that formed the Moon about 40 million years later, may have cooled quickly enough to have oceans and an atmosphere about 4,440 million years ago.[44] However there is evidence on the Moon of a Late Heavy Bombardment from 4,000 to 3,800 million years ago. If, as seem likely, such a bombardment struck Earth at the same time, the first atmosphere and oceans may have been stripped away.[45] The oldest clear evidence of life on Earth dates to 3,000 million years ago, although there have been reports, often disputed, of fossil bacteria from 3,400 million years ago and of geochemical evidence for the presence of life 3,800 million years ago.[9][46] Even the simplest modern organisms are too complex to have emerged directly from non-living materials.[47] Some scientists have proposed that life on Earth was "seeded" from elsewhere,[48] but most research concentrates on various explanations of how life could have arisen independently on Earth.[49]
This wrinkled "elephant skin" texture is a trace fossil of a non-stromatolite microbial mat.
The image shows the location, in the Burgsvik beds of Sweden, where the texture was first identified as evidence of a microbial mat.[50]
For about 2,000 million years microbial mats, multi-layered colonies of different types of bacteria, were the dominant life on Earth.[51] The evolution of oxygenic photosynthesis enabled them to play the major role in the oxygenation of the atmosphere[52] from about 2,400 million years ago. This change in the atmosphere increased their effectiveness as nurseries of evolution.[53] While eukaryotes, cells with complex internal structures, may have been present earlier, their evolution speeded up when they acquired the ability to transform oxygen from a poison to a powerful source of energy in their metabolism. This innovation may have come from primitive eukaryotes capturing oxygen-powered bacteria as endosymbionts and transforming them into organelles called mitochondria.[54] The earliest evidence of complex eukaryotes with organelles such as mitochondria, dates from 1,850 million years ago.[19]
Multicellular life is composed only of eukaryotic cells, and the earliest evidence for it is from 1,700 million years ago, although specialization of cells for different functions first appears between 1,430 million years ago (a possible fungus) and 1,200 million years ago (a probable red alga). Sexual reproduction may be a prerequisite for specialization of cells, as an asexual multicellular organism might be at risk of being taken over by rogue cells that retain the ability to reproduce.[55][56]
Opabinia made the largest single contribution to modern interest in the Cambrian explosion.
The earliest known animals are cnidarians from about 580 million years ago, but these are so modern-looking that the earliest animals must have appeared before then.[57] Early fossils of animals are rare because they did not develop mineralized hard parts that fossilize easily until about 548 million years ago.[58] The earliest modern-looking bilaterian animals appear in the Early Cambrian, along with several "weird wonders" that bear little obvious resemblance to any modern animals. There is a long-running debate about whether this Cambrian explosion was truly a very rapid period of evolutionary experimentation; alternative views are that modern-looking animals began evolving earlier but fossils of their precursors have not yet been found, or that the "weird wonders" are evolutionary "aunts" and "cousins" of modern groups.[59] Vertebrates remained an obscure group until the first fish with jaws appeared in the Late Ordovician.[60][61]
The spread of life from water to land required organisms to solve several problems, including protection against drying out and supporting themselves against gravity.[62][63] The earliest evidence of land plants and land invertebrates date back to about 476 million years ago and 490 million years ago respectively.[63][64] The lineage that produced land vertebrates evolved later but very rapidly between 370 million years ago and 360 million years ago;[65] recent discoveries have overturned earlier ideas about the history and driving forces behind their evolution.[66] Land plants were so successful that they caused an ecological crisis in the Late Devonian, until the evolution and spread of fungi that could digest dead wood.[21]
At about 13 centimetres (5.1 in) the Early Cretaceous Yanoconodon was longer than the average mammal of the time.[67]
Birds are the last surviving dinosaurs.[68]
During the Permian period synapsids, including the ancestors of mammals, may have dominated land environments,[69] but the Permian–Triassic extinction event 251 million years ago came very close to wiping out complex life.[70] During the slow recovery from this catastrophe a previously obscure group, archosaurs, became the most abundant and diverse terrestrial vertebrates. One archosaur group, the dinosaurs, were the dominant land vertebrates for the rest of the Mesozoic,[71] and birds evolved from one group of dinosaurs.[68] During this time mammals' ancestors survived only as small, mainly nocturnal insectivores, but this apparent set-back may have accelerated the development of mammalian traits such as endothermy and hair.[72] After the Cretaceous–Tertiary extinction event 65 million years ago killed off the non-avian dinosaurs – birds are the only surviving dinosaurs – mammals increased rapidly in size and diversity, and some took to the air and the sea.[73][74][75]
A modern social insect collects pollen from a modern flowering plant.
Fossil evidence indicates that flowering plants appeared and rapidly diversified in the Early Cretaceous, between 130 million years ago and 90 million years ago.[76] Their rapid rise to dominance of terrestrial ecosystems is thought to have been propelled by coevolution with pollinating insects.[77] Social insects appeared around the same time and, although they account for only small parts of the insect "family tree", now form over 50% of the total mass of all insects.[78]
Humans evolved from a lineage of upright-walking apes whose earliest fossils date from over 6 million years ago.[79] Although early members of this lineage had chimp-sized brains, about 25% as big as modern humans', there are signs of a steady increase in brain size after about 3 million years ago.[80] There is a long-running debate about whether modern humans are descendants of a single small population in Africa, which then migrated all over the world less than 200,000 years ago and replaced previous hominine species, or arose worldwide at the same time as a result of interbreeding.[81]

[edit] Mass extinctions

Extinction 
intensity.svg Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous Paleogene Neogene
Millions of years ago
Extinction 
intensity.svg Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous Paleogene Neogene
Apparent extinction intensity, i.e. the fraction of genera going extinct at any given time, as reconstructed from the fossil record. (Graph not meant to include recent epoch of Holocene extinction event)
Life on earth has suffered occasional mass extinctions at least since 542 million years ago. Although they are disasters at the time, mass extinctions have sometimes accelerated the evolution of life on earth. When dominance of particular ecological niches passes from one group of organisms to another, it is rarely because the new dominant group is "superior" to the old and usually because an extinction event eliminates the old dominant group and makes way for the new one.[82][83]
The fossil record appears to show that the rate of extinction is slowing down, with both the gaps between mass extinctions becoming longer and the average and background rates of extinction decreasing. However, it is not certain whether the actual rate of extinction has altered, since both of these observations could be explained in several ways:[84]
  • The oceans may have become more hospitable to life over the last 500 million years and less vulnerable to mass extinctions: dissolved oxygen became more widespread and penetrated to greater depths; the development of life on land reduced the run-off of nutrients and hence the risk of eutrophication and anoxic events; marine ecosystems became more diversified so that food chains were less likely to be disrupted.[85][86]
  • Reasonably complete fossils are very rare, most extinct organisms are represented only by partial fossils, and complete fossils are rarest in the oldest rocks. So paleontologists have mistakenly assigned parts of the same organism to different genera which were often defined solely to accommodate these finds – the story of Anomalocaris is an example of this.[87] The risk of this mistake is higher for older fossils because these are often unlike parts of any living organism. Many of the "superfluous" genera are represented by fragments which are not found again and the "superfluous" genera appear to become extinct very quickly.[84]
All genera
"Well-defined" genera
Trend line
"Big Five" mass extinctions
Other mass extinctions
Million years ago
Thousands of genera
Phanerozoic biodiversity as shown by the fossil record
Biodiversity in the fossil record, which is
"the number of distinct genera alive at any given time; that is, those whose first occurrence predates and whose last occurrence postdates that time"[88]
shows a different trend: a fairly swift rise from 542 to 400 million years ago, a slight decline from 400 to 200 million years ago, in which the devastating Permian–Triassic extinction event is an important factor, and a swift rise from 200 million years ago to the present.[88]
This illustration of an Indian elephant jaw and a mammoth jaw (top) is from Cuvier's 1796 paper on living and fossil elephants.

[edit] History of paleontology

Although paleontology became established around 1800, earlier thinkers had noticed aspects of the fossil record. The ancient Greek philosopher Xenophanes (570–480 BC) concluded from fossil sea shells that some areas of land were once under water.[89] During the Middle Ages the Persian naturalist Ibn Sina, known as Avicenna in Europe, discussed fossils and proposed a theory of petrifying fluids on which Albert of Saxony elaborated in the 14th century.[90] The Chinese naturalist Shen Kuo (1031–1095) proposed a theory of climate change based on the presence of petrified bamboo in regions that in his time were too dry for bamboo.[91]
In early modern Europe, the systematic study of fossils emerged as an integral part of the changes in natural philosophy that occurred during the Age of Reason. At the end of the 18th century Georges Cuvier's work established comparative anatomy as a scientific discipline and, by proving that some fossil animals resembled no living ones, demonstrated that animals could become extinct, leading to the emergence of paleontology.[92] The expanding knowledge of the fossil record also played an increasing role in the development of geology, particularly stratigraphy.[93]
The first half of the 19th century saw geological and paleontological activity become increasingly well organized with the growth of geologic societies and museums[94][95] and an increasing number of professional geologists and fossil specialists. Interest increased for reasons that were not purely scientific, as geology and paleontology helped industrialists to find and exploit natural resources such as coal.[96]
This contributed to a rapid increase in knowledge about the history of life on Earth and to progress in the definition of the geologic time scale, largely based on fossil evidence. In 1822 Henri Marie Ducrotay de Blanville, editor of Journal de Phisique, coined the word "paleontology" to refer to the study of ancient living organisms through fossils.[97] As knowledge of life's history continued to improve, it became increasingly obvious that there had been some kind of successive order to the development of life. This encouraged early evolutionary theories on the transmutation of species.[98] After Charles Darwin published Origin of Species in 1859, much of the focus of paleontology shifted to understanding evolutionary paths, including human evolution, and evolutionary theory.[98]
Haikouichthys, from about 518 million years ago in China, may be the earliest known fish.[99]
The last half of the 19th century saw a tremendous expansion in paleontological activity, especially in North America.[100] The trend continued in the 20th century with additional regions of the Earth being opened to systematic fossil collection. Fossils found in China near the end of the 20th century have been particularly important as they have provided new information about the earliest evolution of animals, early fish, dinosaurs and the evolution of birds.[101] The last few decades of the 20th century saw a renewed interest in mass extinctions and their role in the evolution of life on Earth.[102] There was also a renewed interest in the Cambrian explosion that apparently saw the development of the body plans of most animal phyla. The discovery of fossils of the Ediacaran biota and developments in paleobiology extended knowledge about the history of life back far before the Cambrian.[59]
Increasing awareness of Gregor Mendel's pioneering work in genetics led first to the development of population genetics and then in the mid-20th century to the modern evolutionary synthesis, which explains evolution as the outcome of events such as mutations and horizontal gene transfer which provide genetic variation, with genetic drift and natural selection driving changes in this variation over time.[103] Within the next few years the role and operation of DNA in genetic inheritance were discovered, leading to what is now known as the "Central Dogma" of molecular biology.[104] In the 1960s molecular phylogenetics, the investigation of evolutionary "family trees" by techniques derived from biochemistry, began to make an impact, particularly when it was proposed that the human lineage had diverged from apes much more recently than was generally thought at the time.[105] Although this early study compared proteins from apes and humans, most molecular phylogenetics research is now based on comparisons of RNA and DNA.[106]